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Prediction of the contributions to the Reynolds stress 
from bursting events in open-channel flows 
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(Received 9 October 1975 and in revised form 1 June 1976) 

In  this paper we intend to predict the magnitude of the contribution to the 
Reynolds stress of bursting events: ‘ejections ), ‘sweeps ), ‘inward interactions ’ 
and ‘outward interactions’. We shall do this by making use of the conditional 
probability distribution of the Reynolds stress -uv, which can be derived by 
applying the cumulant-discard method to the Gram-Charlier probability distri- 
bution of the two variables u and v. The Reynolds-stress fluctuations in open- 
channel flows over smooth and rough beds are measured by dual-sensor hot-film 
anemometers, whose signals are conditionally sampled and sorted into the four 
quadrants of the u, v plane by using a high-speed digital data processing system. 

We shall verify that even the third-order conditional probability distribution 
of the Reynolds stress shows fairly good agreement with the experimental results 
and that the sequence of events in the bursting process, i.e. ejections, sweeps and 
interactions, is directly related to the turbulent energy budget in the form of 
turbulent diffusion. Also, we shall show that the roughness effect is marked in the 
area from the wall to the middle of the equilibrium region, and that sweeps 
appear to be more important than ejections as the roughness increases and as the 
distance from the wall decreases. 

1. Introduction 
Intensive research on the dynamics of wall turbulence in air flow has been 

performed by many investigators in the last twenty years. On the other hand, 
turbulence measurements in water flow were begun only about eight years ago 
with the development of hot-film anemometers. We (Nakagawa, Nezu & Ueda 
1975) recently published a report on turbulence measurements in open-channel 
flow and clarified the fine-structure of turbulence from the viewpoint of the 
turbulent energy budget. 

The physics of turbulence have now been established in a t  least a qualitative 
sense through experiments and refined data analysis, as pointed out by Mollo- 
Christensen (1971). Kline et al. (1967) and Kim, Kline & Reynolds (1971) dis- 
covered the bursting phenomenon, in which ejections played a predominant role, 
by making visual studies of the mechanism of turbulence production by the 
hydrogen-bubble technique. Also, Corino & Brodkey (1969) and Grass (1971) 
found by flow visualization that sweeps are prominent near thewall. This suggests 
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FIGURE 1. Schematic division of the bursting phenomenon. 

that, sweeps may be as important as ejections for turbulence production. This was 
verified by Nychas, Hershey & Brodkey (1973) and Offen & Kline (1974). 

On the basis of these qualitative results, some researchers have attempted to 
obtain more quantitative knowledge about the structure of the Reynolds stress, 
i.e. hrbulence production, by using point measurements. Such studies have been 
made by Frenkiel & Klebanoff (1967), who used an improved digital method of 
analysis, and by Kovasznay, Kibens & Blackwelder (1970), who used the con- 
ditional sampling method. Wallace, Eckelmann & Brodkey (1 972) and Brodkey, 
Wallace & Eckelmann (1974) measured velocity fluctuations near the wall in oil 
flow by using an X-probe. They then divided the plane of the streamwise and 
normal fluctuating velocity components u and v into four quadrants, as shown in 
figure 1, in order to evaluate the contributions of the ejections and sweeps to the 
Reynolds stress. As pointed out by Brodkey et al. (1974), it  seems appropriate to 
provide unifying terminology for the names of the events. Here, ‘ejection’ 
(u < 0, v > 0), ‘sweep‘ (u > 0, v < 0), ‘inward interaction’ (u < 0, v < 0) and 
‘outward interaction ’ (u > 0, v > 0) are used systematically. 

Willmarth & Lu (1972) and Lu & Willmarth (1973) also analysed the Rey- 
nolds-stress fluctuations in a turbulent boundary layer by using the conditional 
sampling method; they obtained nearly the same results as Wallace et al. (1972) 
except very close to the wall. 

Wallace et al. (1972), Willmarth & Lu (1972), Gupta & Kaplan (1972), Antonia 
& Atkinson (1973) and others investigated the statistical characteristics of the 
Reynolds stress, paying attention to its intermittency, but none of them could 
obtain a definite relationship for the magnitude of each event or its physical 
interpretation because they did not take account of its conditional probability 
density distribution. It is very remarkable that Brodkey et al. (1974) measured 
the conditional probability distributions of u, v and uv and described their 
characteristics but could not obtain these distribution functions theoretically. 

In  the light of the above, this paper will show that the conditional probability 
distribution of the Reynolds stress may be introduced theoretically by making 
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use of the cumulant expansion method for the two variables u and v, in order 
to predict the magnitude of the contribution to the Reynolds stress from each 
event. 

2. Theoretical considerations 
In  this section we are going to evaluate the contribution of the bursting events 

to the Reynolds stress by theoretical analysis. To begin with, we normalize the 
velocity fluctuations by dividing by the turbulence intensity in each direction 
(r.m.s. value) so that E u/u' and 8 = v / d, where u' z (u2)4 andv' = (v")4. Denot- 
ing the joint probability function of a and 8 by p(&, e), its characteristic function 
by @(E,  r), the moment ofhwbyq.. ,  and the corresponding cumulant by Qik, the 
following definitions can be given as indicated by Monin & Yaglom (1971):  

- 

He-re, a((, 7) is the Fourier transform of p(a,  8), and 5 and 7 are its arguments. 
Expanding @(c, 7) in a Taylor series about E = 7 = 0 yields 

Thus Mjk and Qjk correspond to the coefficients in Taylor expansions of @([, 7) 
and In @(E,  7) respectively. The relations between the moments and the cumu- 
lants are successively obtained by making use of (2), (3) and (4). 

= 0, No, = 8 = 0, M2, = O2 = 1, No, = ,ir2 = 1 and Mll = 

Eii/u'u' = - R < 0 (correlation coefficient), the following can be obtained: 

- - - - 
Now, since Mlo = 

&40 = N 4 0  - 3, &31 = M31 + 3R, Q22 = M22 -2R2- Q21 1, = ... M21,J . ( 5 )  
Qoo = 1, Qio = 0, Q20 = 1, Qii = -R, &so = Jf30, 

Qjk for j  < k can be obtained by merely exchangingj and k in the terms of Qjk for 

In  turbulent phenomena the cumulants of extremely high order can usually 
be neglected, and even in the theory of isotropic turbulence the fourth-order 
cumulant terms are sometimes discarded, e.g. by Rotta (1972). This suggests 
that approximation by the lower-order cumulants may be valid for phenomena 
mainly depending upon lower-order moments, because a cumulant is considered 
to be a measure of the deviation from a Gaussian distribution. 

Taking into account the cumulants of less than fourth order, the following 
Taylor series can be obtained from (3) and (5) : 

j 2 k. 
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Through an inverse transformation of ( 1 )  in which the terms of @(E, y) of less than 
fourth order are taken into account, p ( a ,  8 )  can be written as 

where G(a,  8) is the Gaussian distribution for two variables, defined as 

G(a,O) = 
1 exp ( - a2 + 2Ra8 + 0 2 )  

277( 1 - R2)4 2(1-R2) ' 

and Hjk (a, 8 )  is a Hermite polynomial in two variables. 
Equation (7a)  represents a special form of joint probability density distribu- 

tion of the Gram-Charlier type. According to Frenkiel & Klebanoff (1973), the 
generalized Gram-Charlier distribution in the following form extended by 
KampB de FBriet (1966) should be used when higher-order terms are needed: 

" 1  
j + k = 0 3  ! k !  P(a2 = G(a, a) x 7 Ajk (a, @) q k  (a, @), ( 9 )  

where Bjk(a, 0 )  is an adjoint Hermite polynomial in two variables (see Frenkiel & 
Klebanoff 1973). 

The probability distribution of one variable is much simpler and is derived in 
the same manner as (7) :  

or p ( a )  = G(a) { 1 + &&,,,(a3 - 3a) + &Q40(a4 - 602 + 3) ) .  ( 1 1 )  

When all cumulants Qjk in (7) ,  ( 9 )  or ( 1  1 )  with j + k 2 3 are equal to zero, the 
Gram-Charlier distribution becomes the same as the Gaussian one, and thus it 
may be said that Qik gives a measure of the skewness or intermittency of the 
distribution. 

Now consider the probability distribution p,(w) of the normalized Reynolds 
stress w E uv/U;ir. By a change of variables (7a)  may be reduced to 

" R  

R 

P , W  = /-"M P @ >  -Rw/a)da 

- - ,,.IT( 1 - R2)) exp ($2) Som ex?? ( -" 2 ( 1 -  + R2(w'a)2) R2)  

Since Hjk is an odd function for when j + k is odd and vice versa, the third-order 
cumulants in the correction term of p,(w), i.e. the second term in ( 1 2 ) ,  vanish. 
The third-order cumulants, which are closely connected with turbulent diffusion, 
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as will be mentioned later, are much more important quantities than the fourth- 
order cumulants. Furthermore, it has been pointed out by Lu & Willmarth (1973) 
that the pw(w) obtained by neglecting the cumulants of higher than third order, 
which is given by a Gaussian distribution in this case, agrees fairly well with 
experimental values. This may be due to the cancellation of terms including the 
third-order cumulant. Because they disregarded this third-order cumulant, some 
previous studies such as those by Lu & Willmarth (1973) and Antonia & Atkinson 
(1973) could find little obvious relation between the bursting process and the 
probability distribution of the Reynolds stress. 

From the above description, a conditional probability distribution should be 
introduced in order to evaluate the effect of the third-order cumulants, while, for 
simplicity, the fourth-order cumulants, which are less important, may be omitted. 

We shall denote the probability distributions of each event shown in figure 1 by 
pl(w) (outward interaction), pz(w)  (ejection), p3(w) (inward interaction) and 
p4(w) (sweep), respectively. Therefore 

P W W  = I ) l ( W )  +PZ(W) + P 3 W  +P4(W).  (13) 

From (7) and (12 ) ,  pi(w) ( i  = 1, . . . , 4 )  can be derived by using conditional calcula- 
tion. For example, pz(w) becomes 

K,+,(t) = 2vt-lK,(t) +K,-,(t),  K-,(t) = K,(t) ,  (17) 

where K ,  is the vth-order modified Bessel function of the second kind. Hence 
substitution of (15)-( 17) into (14) yields 
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where 

R ti 
$-(w) = %eRtK4(t) ~ + R)2 ((1 - R)  6.P) t - (%R8-+ D-)] (24) 

and (25) 

8, and S, are the skewness factors of u and v respectively, as S,& = a3 and S, = as. 
D, and D, correspond to turbulent diffusion in the x and y directions respectively, 
as D, = 42.02 and D, = 0.G2, and here we shall call them the diffusion factors. 

Using the conditional probability pi(w) (i = 1,  . . . , 4) and (1  3), pw(w) becomes 
2pcr(w), in which $+ disappear; then pw(w) coincides with a distribution directly 
derived from the Gaussian. Thus it is suggested that @* are very important terms 
for the sequence of the bursting process and that they are closely connected 
with the turbulent diffusion. When the pair (u, v) is transformed into (-u, w), 
the aforementioned quantities change as follows: R-t  - R, S-+S+, D-+D+, 
w-+ - w(t+ - t )  and, consequently, pa(w) -+pa(w) and $-(w) +$+(w). Hence, 
for example,p,(w) is transformed into pl(w), and thus an ejection event is trans- 
formed into an outward interaction event as expected in reality. 

Next, taking into account the partition level H in the diagram of Reynolds 
stress w = uv/uV according to Lu & WiIlmarth (19731, as shown in figure 1 (a), the 
contributions to the Reynolds stress can be associated with one of five events 
including a hole event when I wI < H .  The hole event is labelled event 5. Then the 
time fraction Ti(H)  and the contribution to the Reynolds stress RS,(H) corres- 
ponding to each event can be represented by 

8* = +(S, & 8,) = *(&03 k &30), D* = a(D,  k D u )  = +(Qz1 k Ql2). 

- - 

H 4 

S - H  i=l 
T5(H)  = p,(w)dw = 1 - C T, (H)  (the hole event) (27) 

and 

4 

i=l 
RS,(H) = s:H wpw(w) dw = 1 - I: RX,(H) (the holeevent). (29) 

When H = 0, the above equations describe the contribution of each event given 
by figure 1 (a).  When H > 0, it may be expected that the characteristics of each 
event such as skewness and intermittency can be made clear. Also, some relation- 
ships between the coherent vortex motion with turbulent production which was 
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observed by Corino & Brodkey ( 1  969) or Kim et al. (1 971) through flow visualiza- 
tion and the data obtaincd in this study through point measurements may be 
discussed by varying H as a parameter. 

3. Experimental equipment and data analysis 
The experiments on two-dimensional fully developed turbulent flow in an open 

channel were conducted in a tilting flume 15 m long, 50 cm wide and 30 cm deep. 
The channel slope could be changed by adjusting two jacks so that normal 
flow could be obtained. A few baffles and screens to prevent the occurrence of 
large-scale disturbances were set up a t  the entrance of the channel, and conse- 
quently a fully developed turbulent flow was obtained at the test section 9.5 m 
downstream of the entrance. 

Four kinds of bed roughness were chosen for the test: one smooth lucite bed 
(case A )  and three rough beds (cases B, C and D )  made of spherical glass beads 
with uniform diameter ks spread densely over the bed (ks represents the equiva- 
lent sand roughness of Nikuradse). The hydraulic parameters for each run are 
shown in table 1.  Since the Reynolds number Re = Urn h/v (where Urn is the mean 
velocity and h is the flow depth) and the Froude number Pr = U,/(gh)i were kept 
nearly constant for all runs, it was expected that only the effects of roughness 
would be observed. 

The streamwise and normal components of the instantaneous velocity were 
measured by using a set of constant-temperature anemometers with a DISA type 
55A89 dual-sensor hot-film probe. To diminish the effects of variation of water 
temperature and impurities in the water upon the characteristics of the hot film, 
a stable water temperature was maintained during the operating period by 
circulating the water throughout the day before the test began, while the suspen- 
ded materials in the flow were filtered by gauzes. The hot-film anemometers were 
calibrated by using both a Pitot tube and a float before and after each run. The 
calibration curves wereobtained by the methodgiven by Bradshaw (1971, chap. 8), 
the correction for the effect of water temperature being done by using the calibra- 
tion coefficients. 

The output signals of the anemometers were recorded in analog form by using 
an F M  tape recorder and then were reproduced for conversion to digital form. In 
order to obtain 5000 samples at  any measuring point, 100 Hz, 18 bit analog-to- 
digital conversions were conducted by using an analog-to-digital converter, 
FACOM U-200. Some statistical analysis was carried out by means of conditional 
sampling with a large digital computer, FACOM 230-75, Data Processing Center, 
Kyoto University. 

The local mean velocities and some turbulence characteristics were obtained 
easily, and the mean velocity profile indicated a logarithmic law, by which the 
friction velocity U* was evaluated as shown in table 1.  Then, it wits confirmed 
that the flow was two-dimensional and fully developed. A more detailed des- 
cription of these results is given in Nagakawa et al. (1975). 
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FIGURE 2. Correlation coefficients in turbulent open-channel flows. Present results : 0, 
kt = 0 (smooth bed); 0 ,  kf; = 9 (incompletely rough bed); 0 ,  k: = 48 (incompletely 
rough bed); 0 ,  k: = 136 (completely rough bed). Laufer (1954): - - -, Re = 1.1 x lo4 

(smooth channel); --- --, Re = 2.2 x lo4 (smooth pipe). Bremhorst & Walker (1973): 
-, Re = (2.3- 9.0) x lo4 (smooth pipe). Lu & Willmarth (1973): x , Re = 4 x lo4 

(smooth boundary layer). 

4. Experimental results and discussion 
Correlation coeficients 

The correlation coefficients R = -UV/u'v' > 0 for the smooth bed (case A ) ,  the 
incompletely rough beds (cases B and C) and the completely rough bed (case D )  
are shown in figure 2 vs. y/h.  In  the wall region (y+ = U* y /v  < 100 or y / h  5 0.1 in 
this case) and the free-surface region ( y /h  > 0.6) respectively, R increases and 
decreases monotonically with y/h,  while in the equilibrium region (0.1 < y / h  < 
0.6) it remains nearly constant. 

The subdivision of turbulent flow field is discussed by Nagakawa et al. (1975). 
The comparison with previous data in pipe flow and boundary-layer flow shown 
in figure 2 indicates that R displays the universal characteristics, irrespective of 
the flow conditions and the roughness. 

Probability density function and its higher moments 

The data plotted in figure 3 are the probability densities measured in each region 
of turbulent flow over a smooth bed. Data were sampled by dividing the region 
- 3 < a, a < 3 into 40 cells. When the skewness factor S and the flatness factor 
F are given, the Gram-Charlier distribution (1 1) is determined by using a relation 
such as Q40 = Fu - 3  from ( 5 ) ,  and comparing this with the observed values. 
The experimental values of S and F for u and v are shown in figure 4, together 
with data obtained in a boundary layer by Gupta & Kaplan (1972) and in an oil 
flow by Kreplin (1973, quoted in Eckelmann 1974). Owing to the deficiency of 
measurements in the vicinity of the wall, it is difficult to make a definite remark 
about the difference in the values of these quantities in free-surface flow and 
in boundary-layer flow. But, except for the free-surface region, good agree- 
ment between the two may be observed. In  this region both S and F have their 
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t4=  UIU’, v^ = vlv’ 

retical curves [equation (ll)]: - , u (third order) ; - - - , v (third order); - - - - - - -, u 
FIGURE 3. Probability density distributions of u and v (smooth bed). Measurements: 
@, 8 ,  u, v a t  y / h  = 0.064; 0, 0 ,  u, v at y / h  = 0.193; a, x ,  u, v a t  y/h = 0.772. Theo- 

(fourth order); -, v (fourth order). 

maximum values, while they increase or decrease monotonically in the out,er 
layer of the boundary-layer flow. This discrepancy may be due to the presence of 
large-scale intermittency in the boundary-layer flow. 

It is noteworthy that S, and 8, are almost symmetrical with respect to each 
other about the axis S = 0 (Gaussian) for any value of yf, and change sign at  
y+ N 10. Also, figure 4 suggests that the Gram-Charlier distribution should be 
taken into account in both the wall and the free-surface regions because the 
deviation from the Gaussian distribution becomes larger in these regions. 

The theoretical curves of the probability density given by ( 1  1)  were calculated 
by using the measured values of S and F, and are shown in figure 3. Despite some 
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FIGURE 4. Distributions of skewness and flatness factors of u and w. Present results: 
0, u; 0,  w (open channel, Re = 1.1 x lo4). Gupta & Kaplan (1972): A, u ;  A, v (boundary 
layer, Re, = 1900; 0 = momentum thickness). Kreplin (1973): -, experimental curves 
of S, and F,  (oil channel Re = 4800 and 7100). 

scatter in the observed data, the actual phenomena can be fairly well explained 
by the Gram-Charlier distribution. Though the fourth-order distribution is in 
better agreement with the experimental results than the third-order one, the 
difference between the two does nothing to change the essential characteristics of 
the distribution. In the wall region, except for the viscous sublayer and the 
equilibrium region, the third-order distribution seems to be sufficiently accurate. 
But it is better to consider the fourth-order distribution for the free-surface 
region, where the deviation from the observed values becomes comparatively 
large. Like S, and S,, shown in figure 4, the distributions of p ( 6 )  and p ( 8 )  indicate 
nearly symmetrical deviation to the positive and negative sides of the zero axis 
respectively; p(&) having its maximum value on the positive side and its longer 
tail on the negative side, and vice versa for p(5 ) .  

The above description of the flow over the smooth bed applies in the case of the 
rough beds too. The values of the fourth- and fifth-order moments are shown in 
figure 5, as well as the data obtained by Lawn (1  971). I n  the wall and equilibrium 
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-9.0 4 a 
A 

FIGURE 5 .  Distributions of the fourth- and fifth-order moments. Fourth-order moments of 
u and v :  0, 0,  u, Y (smooth channel, present results); a, (J, u, v (rough channel, present 
results); x , +, u, Y (smooth pipe, Lawn 1971). Fifth-order moments of u: A, A, smooth, 
rough (observed); - - -, -, smooth, rough [calculated from (30)]. 

regions the fourth-order moments hardly deviate from the Gaussian distribution 
and thus the third-order distribution may be valid in these regions. In  the free- 
surface region, however, the third-order approximation may yield significant 
errors because of a considerable deviation from the Gaussian distribution. 

Judging from figure 5, the fifth-order moments widely deviate from Gaussian 
distributions. The following can be deduced in the same way as (5): 

&50 = M50 - 1oM30* (30) 

The values of M50 calculated from (30) by setting Q 5 0  equal to zero are shown in 
figure 5 ,  and they agree fairly well with the observed values. This is the reason 
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-6.0 -4.0 -2.0 0 2.0 4.0 6.0 8.0 
w = uv/iiE 

FIGURE 6. Probability density distributions of Reynolds stress (smooth bed). 0, y / h  = 
0.064, R = 0.351 (wall region); 0 ,  y / h  = 0.193, R = 0.420 (equilibrium region); 0, 
y / h  = 0.772, R = 0.287 (free-surface region); - , theoretical curves [equation (13)]. 

why the higher-order cumulants can be neglected as described in $2.  Since all the 
odd-order moments of a Gaussian distribution are equal to zero, it is suggested 
that the third-order Gram-Charlier distribution should replace the Gaussian one. 
Also, it  seems that in the wall region the fifth-order moment is influenced by 
roughness, which will be discussed later in detail. 

Probability density function of Reynolds stress 

The observed values of the probability density function p,(w) of the Reynolds 
stress in each flow region are indicated in figure 6, as an example of the flow over a 
smooth bed. The fluctuating Reynolds stress w ( = uufUV) was sampled by dividing 
- 6 < w < 8 into 40 cells. The sums of the values of p,(w) in the ranges w < - 6 
and w > 8 respectively are plotted on the broken lines in figure 6 .  Since 

P,(W) = 2Pa(W) 
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FIGURE 7. Distributions of skewness and flatness factors of uv. Observed: 0, smooth; 
0 ,  rough. Calculated from (31) and (32): -, - - - , smooth, rough (third order); -, 
- - - - - -, smooth, rough (fourth order). Antonia & Atkinson (1973), boundary layer: 
A, smooth; A, rough. 

as indicated by ( 13), pw( w) was calculated by using the values of R given in figure 2, 
and the resulting curves are shown as solid lines in figure 6. Good agreement 
between the theoretical and experimental values was obtained, especially in the 
equilibrium region, and any small discrepancy between the two was due to a large 
deviation of the fourth-order moments from Gaussian as shown in figure 5. 
Consequently, the unconditional probability distribution p J w )  of Reynolds 
stress can be represented by one directly derived from a Gaussian distribution 
with high accuracy, as verified by Lu & Willmarth (1973) and Antonia & Atkin- 
son (1973). 
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It may be noted from figure 6 that the probability distribution of values of uv 
has a very sharp peak at  w = 0 and a very long tail extending to large values of 
Iw I. In  a theoretical equationp,(w) becomes infinite at  w = 0 because Ko(0) = co 
and becomes larger on the positive side of the curve than on the negative side 
because 

m - 
w = [ wp,(w)dw = 1. 

J - m  

Consequently, it can be suggested that almost all of the events occur with small 
values of ( w I  but sometimes an event occurs with a very large value of (wl. Hence 
we can conclude that the instantaneous Reynolds stress might have marked 
intermittency . 

In  order to investigate this characteristic in detail, the observed values of the 
skewness factor S,, and the flatness factor F,, of w are shown in figure 7, together 
with data obtained by Antonia & Atkinson (1973). Provided that Qjk = 0 for 
j + k > 5, S,, and F,, can be evaluated in terms of the lower moments in the same 
way as in (5): 

The theoretical values of S,, and Fuv were calculated from (31) and (32) by 
using the experimental values of the moments as indicated in figure 7. The 
calculated values are in comparatively good agreement with the observed ones. 
Some of the discrepancy in the F,, diagram may be due to the error introduced by 
neglecting the higher-order cumulants. 

As previously mentioned, the difference between the third-order distribution 
and the fourth-order one is not large. Both Xu, and F,', show a gradual variation 
with y / h  up to the equilibrium region, similar to the distribution of the higher- 
order moments shown in figure 5, but in the free-surface region they increase 
abruptly and then decrease towards the surface. 

Although good agreement between the behaviour of S,, and F,, in open- 
channel flow and in boundary-layer flow can be seen up to the equilibrium region, 
in the free-surface region corresponding to the outer layer some discrepancies 
similar to those in figure 4 are evident. Since the absolute values of Su, and Fuv 
are comparatively large in the free-surface region, the strong asymmetry and 
intermittency in the Reynolds-stress fluctuations may appear, as inferred from 
figure 6. 

The effect of roughness on S,, and F,, seems to appear only in the wall region, 
so that their values for the rough beds become smaller than those for the smooth 
bed. This means that the profile of thep,(w) distribution is not so slender and the 
intermittency of the Reynolds-stress fluctuations is smaller in case of a rough bed. 
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Conditional probability distribution of Reynolds stress 
As previously mentioned, p,(w) cannot describe the characteristics of each event 
separately, because some of the terms corresponding to different events may 
balance each other as indicated by (13). Thus the conditional probability density 
functionspi(w) (i = 1, ..., 4) expressed by (18)-(21) should be considered in order 
to discuss the contribution of each event to the Reynolds stress. This can be done 
by determining both the skewness factor S and the diffusion factor D connected 
with u and v, and their observed values for smooth and rough beds are shown in 
figure 8, together with data for a pipe flow obtained by Lawn (1971). Although 
the diffusion factor is smaller than the corresponding skewness factor, both 
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FIGURE 9. Distributions of S+, S-, D+ and D-. Present results: -0-, Sf, Df (smooth); 
-e-, S-, D- (smooth); - - - 0 - - -, Sf, D+ (rough); - - -@ - - -, S-, D- (rough). 
Lawn (1971), smooth pipe: -+-, S+, D+; -x-, S-,  D-.  

curves are qualitatively similar and have the following characteristics. First, the 
relation between D, and D, resembles that between S, and S,, for example the 
0, curve is almost the reffexion of the D, curve in the zero axis. Also, S, < 0, 
S, > 0 and D, < 0, D, > 0 except in the immediate vicinity of the wall. Another 
characteristic seen in figure 8 is the remarkable effect of roughness in the vicinity 
of the wall. I n  case of the smooth bed, S and D both vary so gradually that they 
remain nearly constant when y /h  is below the equilibrium region. For a rough 
bed the absolute values of S and D decrease towards the wall so rapidly that they 
become zero a t  y /h  N 0.1 and then, changing sign, increase upon approaching the 
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FIGURE 10. An example of the calculated conditional probability distributions of Rey- 
nolds stress (smooth bed). __ , calculated from (18)-(24) at y / h  = 0.193; -.-*-, 
observed by Brodkey et al. (1974) at y/h = 0.230 (y+ = 45). 

wall. These trends are shown by the dashed lines in figure 8. Since in the middle of 
the equilibrium region the values of S and D for a rough bed always coincide with 
those for a smooth bed, it can be concluded that roughness has an effect on the 
values of S and D in this region at least. 

In the free-surface region S and D both have a maximum value and decrease 
towards the free surface like the odd-order moments shown in figures 5 and 7. 
There is a close resemblance between our curves and Lawn’s for a smooth bed 
except in the free-surface region. The difference in magnitude over the whole 
depth between our curves and Lawn’s may be caused by the difference in data 
processing. As mentioned by Frenkiel & Klebanoff (1967)) the analog method 
used by Lawn cannot be expected to obtain such accurate values of the higher- 
order moments as the digital procedure adopted here. 

S+, D+, S- and D- can be evaluated from (25) for the values of S and D obtained 
above and are shown in figure 9. Judging from (25), and the symmetry between 
S, and S, and D,, and D, in figure 8, S+ and D+ will reduce to nearly zero, and 
S- and D- to S ,  and D, respectively. The roughness effect is marked for S- and 
D- over the equilibrium region, while neither S+ nor D+ displays this effect be- 
cause of cancellation of the roughness terms. By substituting the values of S+, 
D+, S- and’D- into ( 1  8) - (24) with the Bessel function K&(t) equal to (n/2t)& e-t, 
the conditional probability distributions of the Reynolds stress can be obtained. 
An example of the calculated distribution for each event is presented in figure 10. 
The probability distribution at  the point ylh = 0.193 in the equilibrium region 
over a smooth bed is represented in terms of 1 w}p(  w). Similar figures have been 
obtained in the other regions and for rough beds. These theoretical results agree 
very well with the observations by Brodkey et al. (1  974, figure 9). 

In figure 10 both the ejection and the sweep events exhibit much larger values 
and much longer tails than the interaction events, which implies that the ejection 
and sweep events have much greater intermittency. Despite having a smaller 
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maximum, the curve of the ejection events has larger values than that of the 
sweep events beyond w 21 5, so that it may be expected that ejections make 
the greatest contribution to the Reynolds stress. Since IwIpl(w) is similar to 
IwI p4(w) while IwJp,(w) is similar to IwIp3(w), the characteristics of these events 
mainly depend upon the sign of u. This gives theoretical support to the observation 
by Brodkey et al. (1974) that the bursting process may be governed by the fluc- 
tuating velocity u rather than by v. 

The fact that wp,(w) in figure 10 takes small negative values for large values of 
w is unreasonable, and therefore the sweep events cannot be represented 
accurately by (21) in this range of w. This negative p4(w) would probably be 
corrected by considering terms of higher than third order which have been des- 
cribed earlier. Thus the discrepancy between the experimental results and the 
theoretical values predicted by the third-order approximation will become 
larger near the free surface, where S,, and F,, are large. 

The fraction of time T, (H)  and the contribution to the Reynolds stress RS,(H)  
corresponding to each event in the flow over a smooth bed are shown in figures 
11 (a ) ,  ( b )  and (c) for a typical point in the wall, equilibrium and free-surface 
regions respectively. 

Theoretical curves were obtained from (26)-( 29), while our experimental data 
were analysed by almost the same method of conditional sampling as that used 
bv Lu & Willmarth (1973): 

1 T  T,(H) = lim ?lo &(t, H ) d t  (i = 1,2,3,4), 
T - t m  

where 

(33) 

1 for 
0 for Iw(t)I < H .  

Iw(t)I > Hand  the point (u, v) in the ith quadrant, 
I.&, H )  = 

In  the wall region (figure 11 a)  and the equilibrium region (figure 11 b) ,  the 
agreement between the experimental data and the predicted values is fairly good 
over a wide range of hole size H ,  so that it may be expected that the third-order 
probability distribution represents the correct picture for a sequence of bursting 
processes. In the free-surface region (figure 11 c), however, a discrepancy between 
the two appears for large values of H, owing to the neglect of higher-order terms. 

Although the time occupied for H < 1 amounts to about a half of the total 
time, the corresponding contribution to the Reynolds stress is only a few per cent, 
which suggests that w(t) has a large intermittency. Though the inward interaction 
shows slightly larger values than the outward interaction, they both become 
negligibly small a t  H _N 7, and consequently the negative contribution to the 
Reynolds stress disappears. The sweep event decreases rapidly with H and 
beyond H 2 10 only the ejection event contributes to the Reynolds stress, while 
the time occupied by this event is very short. From this i t  may be inferred that the 
ejection event may arise in the form of a very sharp pulse, which agrees well with 
the results obtained by Corino & Brodkey (1969), Kim et al. (1971) or Grass 
(1971) by means of flow visualization. 
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FIGURES 11 (a ,  b ) .  For legend see facing page. 

The correlations in magnitude among the four events are invariant over the 
whole depth. RSi(H) shows much larger values in the free-surface region than in 
other regions, while the Ti(H) in each region nearly coincide with each other, so 
that T, E T4 and TI N T3. I n  particular, the fact that T, < T4 and RS, > RS, for 
small values of H implies that the ejection event is more intensive than the 
sweep event in this range. 

A typical example of the conditional probability distribution of the Reynolds 
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FIGURE 11. Fractional contributions to  Reynolds stress and fraction of time occupied by 
each event (smooth bed). @, fraction of time occupied by ith event; @, fractional contri- 
bution to  -?is from ith event. Observed values: 0, RS,; 0, RS,; D, RS,; Q ,  RS,; 

S+ = -0.090, D+ = -0.026, S-  = 0.292, D- = 0.151 and R = 0.351. (b) Equilibrium 
region (y/h = 0.193); Sf = -0.089, Df = -0.026, 8- = 0.254, D- = 0.231 and R 
= 0.420. (c)Free-surface region (y/h = 0.772); Sf = 0.064, D+ = - 0.035, S- = 0.423, D- 
= 0.289 and R = 0.287. 

0, RSs; 0 ,  T5. -, ----.  , calculated curves from (26)-(29). (a) Wall region (y+ = 38); 

stress in the flow over a rough bed is presented in figure 12, together with the 
experimental results. Since the roughness effect appears predominantly in the 
wall region as indicated by our previous research, only the structure of the Rey- 
nolds stress in this region is discussed here; it  was verified that the structure in 
theotherregions was almost the same as that for a smoothbed, showninfigure 11. 
The agreement between the theoretical curves and the experimental values is 
fairly good. It is noteworthy that the relations between the magnitudes of the 
ejection and the sweep and between the magnitudes of the inward and the out- 
ward interactions become the reverse of those for a smooth bed because of the 
negative values of S- and D-. This result will be discussed in detail later. 

Relative intensity of the different events 

I n  order to describe clearly the relation between the sequence of the bursting 
process and the Reynolds stress, it  is necessary to investigate the relative in- 
tensity of each event a t  H = 0. Figures 13(a) and ( b )  show the distributions of 
the Reynolds stress contributed by each event us. y / h  for the smooth and rough 
beds respectively. Experimental results for a smooth boundary layer by Lu & 
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FIGURE 12. Fractional contributions t o  Reynolds stress and fraction of time occupied by 
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FICUXE 13. Distributions of contributions to Reynolds stress from different events with 
H = 0. (a) Smooth bed (case A ) .  ( b )  Rough bed (case D ) .  Present results: @, - R B I ;  
0, RS,; 0, -RS,; 0 ,  RS,; -- , calculated from (28).Brodkey et al. (1974), oil channel: e,  -RS,; 0 ,  RS,; 0, -RS,; +, BS,. Lu 8: Willmarth (1973), boundary layer: A ,  
RS,; A, RS,. 
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Willmarth (1 973) and for a smooth oil channel by Brodkey et al. (1974) are also 
shown. It is very interesting that the observed values completely agree with the 
curves calculated from (28) over the whole depth, irrespective of the roughness 
size. This implies that the theoretical considerations in 0 2 may be able to explain 
the bursting phenomenon in some detail for both rough and smooth beds. 

In  case of the smooth bed, there exists the relation ejection > sweep > in- 
ward interaction > outward interaction within the observed range of y/h. The 
difference between the two interactions, however, is almost negligibly small 
because Sf N D+ N 0 on the basis of the symmetry between S, and S, and be- 
tween D, and D ,  in (25). In  the wall region the intensities of all events decrease 
with increasing ylh, and good agreement was obtained between our results 
and those by Brodkey et al. (1974). Although the values of the ejection given by 
Lu & Willmarth (1973) agree well with our data, the values of the sweep show 
some differences. This discrepancy will be discussed later, with the characteristic 
quantities in the wall region represented by a y+ parameter. 

Next, in the equilibrium region, the intensity of each event is nearly constant 
irrespective of y/h. Since in this region a dynamic equilibrium exists between the 
turbulence production and dissipation, and a similarity in turbulent structure is 
expected to exist independently of external boundary conditions, it is expected 
that the bursting process and the accompanying turbulence production may 
attain a stable equilibrium state in this region, resulting in almost constant 
intensity for each event. The rates of intensity contributed by ejections and 
sweeps are about 75 % and 60 % respectively, and the excess Reynolds stress 
balances the sum of the negative rates contributed by the inward and outward 
interactions. Similar characteristics were verified by point measurements by 
Lu & Willmarth (1973) or Brodkey et al. (1974) and by flow visualization by 
Corino & Brodkey (1969) or Kim et al. (1971). 

In  the free-surface region the intensity of each event rapidly increases with 
ylh.  Near the free surface both ejections and sweeps show a positive stress of over 
100 yo, while the negative stress brought about by the interactions increases to 
such an extent that the differences between the positive stress and the negative 
stress are equal to the net Reynolds stress. 

The relations between the intensities of each event in case of the rough beds 
andthesmoothbedarealmostthesame, asshowninfigure 13 (b),sothatwecancon- 
firmtheobservation by Grass (1 971) that both ejectionsand sweepsexist irrespec- 
tive of the roughness conditions. But, in the range from the wall to the middle of 
the equilibrium region, where the roughness effect on the turbulence structure 
may be expected to appear, some differences in the intensity profiles for the 
roughandsmooth beds can beobserved. Itis noteworthy that, contrary to the case 
of a smooth bed, the intensity of ejections decreases towards the wall to become 
nearly equal to that of the sweeps at  y/h N- 0.1, and sweeps may become more 
intense than ejections in the vicinity of the wall as was observed by Grass (1971) 
using the hydrogen-bubble technique. This fact that both ejections and sweeps, 
which are the predominant events in the bursting phenomenon, may be greatly 
affected by the roughness condition is very important and will be discussed in 
detail later. 
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Willmarth (1973), boundary layer, Reo = 4200. 

The ratio RS,/RS, of the Reynolds stress of a sweep to that of an ejection is 
plotted in figure 14, for each degree of roughness, with the results obtained by 
Wallace et al. (1972), Brodkey et al. (1974) and Lu & Willmarth (1973). In our 
experiments, for y+ > 100 and case of a smooth bed RS,IRS, remains nearly 
constant, the Reynolds stress of sweeps being about 70 % of that of the ejections, 
showing a good agreement with data by other investigators. For y+ < 100, our 
values increase towards the wall like those of Wallace et al. (1972) or Brodkey et 
al. (1974), while the values by Lu & Willmarth (1973) show the reverse tendency, 
decreasing towards the wall. Lu & Willmarth suggested that this discrepancy 
might be due to the difference in the Reynolds number. 

Assuming that S+ and D+ are both approximately zero on account of the sym- 
metry of S and D and that 0-1s- is nearly constant and equal to 0.7 (judging 
from figure 9), the curves of RS41RS, against S- for different values of R can be 
calculated from (28) ; these results are shown in figure 15. A definite conclusion on 
the bursting process over the whole depth may not be drawn owing to the lack of 
data on the diffusion factor Din the vicinity of the wall. But if the above assump- 
tions can be made here, it can be seen that RS,IRX, may rather increase towards 
the wall because S- is considered to decrease as it approaches the wall because of 
the variation of the skewness factor S shown in figure 4. Compared with figure 14, 
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the calculated curves represent well the experimental results in the wall region. 
The fact that the contribution of sweeps becomes larger than that of the ejections 
as the wall is approached is also suggested by the results obtained by ZariE 
(1972). Judging from the above, a tendency for the values of RS,/RS2 iri the 
vicinity of the wall to decrease towards thewall, as indicated by Lu & Willmarth, 
seems to be incorrect. 

Our data show that in the wall region the values of RS4/RS2 increase in propor- 
tion to the roughness scale, while in the outer part of the wall region the roughness 
effect diminishes with increasinb y+ and the same turbulence structure as in the 
flow over a smooth bed is seen in figure 14. This roughness effect on the Reynolds 
stress is due to  the variation of the skewness factor S a n d  the diffusion factor D 
with roughness. As shown in figure 15, S- and D- both decrease with increasing 
roughness in the range from the wall to the middle of the equilibrium region, 
which results in the increase of RS4/RS2 shown in figure 15. Thus the experimen- 
tal results shown in figure 14 can be reasonably explained. 

Defining T, = q%/2Uz as the turbulent energy transport, where &? is the 
turbulent kinetic energy, the following equation can be derived: 

(36) 

Since Q21 N D-, Qo3 2: S- and v’/u’ 1: 0.55 was obtained by the authors (1974), 
(36) is reduced to the following, independent of the roughness condition: 

T, 1: W l u ’ )  (u’/U*)~{C?~~ + 2(v’/u‘)2 C?03>. 

T, ~ ,0*28(u’ /U*)~(D-+  0*6S-). ( 3 6 4  

Figure 16 shows the values of T, calculated from (36) using the measured velo- 
city fluctuations. As mentioned in Nakagawa et al. (1975), the roughness effect is 
marked on this kind of figure. We can see from (36a) that T, depends upon the 
values of D- and S- and so it decreases with increasing roughness. Since aT,/ay 
is directly involved in the turbulent energy budget as the term representing 
turbulent energy diffusion, it is expected that the bursting corresponding to the 
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ejection or sweep motion is closely connected with the turbulent energy budget 
in the form of the turbulent diffusion. 

The fractions of time occupied by each event on the smooth and rough beds 
are shown in figures 17(a) and ( b ) ,  respectively, together with the theoretical 
curves calculated from (26). Unlike RS,, the magnitude of the fraction of time 
satisfies the relation sweep > ejection > outward interaction 2: inward inter- 
action. Also, these results agree very well with those obtained by Brodkey et al. 
(1974). Each fraction of time is nearly constant irrespective of y/A except in the 
free-surface region, where the fractions of time for all events tend to approach a 
definite value on the free surface. It may be seen from this characteristic as well 
as that  of RSi that  the bursting process near the free surface may consist of 
smoother and more isotropic events. The ratios of each fraction of time, which 
have been calculated in the same manner as in figure 15, are shown in figure 18. 
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TJT, increases with increasing S- and is hardly affected by the variation of R, 
which can also describe the observed data reasonably. 

The distributions of RS, and T, for the ejection and sweep in the wall region 
are shown in figures 19 (a )  and (b)  respectively. Our data agree very well with the 
results obtained by Brodkey et al. Though some of the characteristics of these 
parameters have already been discussed, a remarkable aspect should be noticed: 
the relation in magnitude between the ejection and sweep may reverse at y+ -N 10, 
which corresponds to the edge of the viscous sublayer. This characteristic can be 
predicted by the theory developed in 0 2, using the distributions of the skewness 
factors of u and v shown in figure 4. 

Lastly, the turbulent energy production P = -UV(aU/ay) is plotted us. the 
flow depth in figure 20. The positive and negative time-average production are 
given by (RS, + RS,) P and (RS, + RS,) P, respectively. The contribution of 
negative production to the net production is comparatively small up to the 
equilibrium region, but in the free-surface region i t  becomes of the same order as 
that of the net production though its absolute value is very small. It can be con- 
cluded, therefore, that the energy interchange from turbulence to the mean 
flow should not be neglected in the free-surface region. This property has been 
suggested by Hino, Sawamoto & Takasu (1975) even in an oscillating pipe flow. 

5. Conclusions 
In  this paper the conditional probability distributions of the Reynolds stress 

have been deduced from a third-order joint distribution of u and v of Gram- 
Charlier type. In addition, how various events in the bursting process contribute 
to the Reynolds stress has been investigated. The turbulent fluctuations in an 
open-channel flow over smooth and rough beds have been measured by dual- 
sensor hot-film anemometers and the relations among these events in the bursting 
process have been investigated by conditional sampling of their signals. Thus we 
have confirmed that even the third-order probability distribution of the Reynolds 
stress can describe the experimental results very well. 

We have clarified that the sequence of events in the bursting process, i.e. 
ejections, sweeps and interactions, bears a direct relation to the turbulent 
energy budget via the turbulent diffusion. We have noted that up to the middle of 
the equilibrium region the roughness effect is marked and sweeps may become 
more dominant than ejections with increasing roughness. 
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